时间:2019-01-02 作者:英语课 分类:数学英语


英语课

by Jason Marshall


In the last article, we talked about averages and one specific way statistics can help answer questions without letting emotions interfere 1. But the type of average value we talked about is just one of manyuseful meanings assigned to the word “average.” Today we’re going to talk about these many meanings and how to calculate the value of one of them: the arithmetic mean.

How is “Average” Defined?

As we talked about last time, batting averages in baseball tell us how often a hitter has been successful at the plate. For example, a .320 batting average means a player has hit safely in 32% of his at bats. But, besides telling us about the past successes of baseball players, what exactly is the concept of an average value good for? Well, the purpose of an average value is to find a single number to represent the typical value of an entire list of numbers.

Just what types of lists are we talking about? Well, almost anything: a list of grades on an algebra 2 test; a list of the weights of golf balls coming off a manufacturing line; or perhaps a list of how many leaves are on each tree in an orchard 3. Each of these lists provides what is called a sample of data, and the calculated average value of that sample represents its typical, or average, value. So, what’s the best way to calculate this average value?

What is the Arithmetic Mean?

Well, there really isn’t a “best” way to calculate the average value—there isn’t one unique method that gives all the information we’d like to know about a sample. So then, what’s the best-known way? The value you probably most commonly associate with an average is called the arithmetic mean—usually just called the mean for short. In fact, since it’s far-and-away the most commonly used method for defining average values, it’s frequently known simply as the average. In an effort not to get our terms confused, I’m going to stick to calling it the mean. So, how is it calculated?

How to Calculate Mean Values

Imagine you have 11 fun-pack sized bags of potato chips. How many chips do you think each bag contains? Instead of guessing, let’s imagine you open each bag, count the number of chips, and carefully record those numbers on a piece of paper. I’ve never actually done this experiment, but I’m willing to bet that the bags won’t all have the same number of chips in them. After all, chips get broken and come in all kinds of funny shapes and sizes, so the number is certain to vary. After counting all the chips, let’s imagine you find that the 11 bags contain totals of 18, 15, 19, 18, 23, 17, 18, 16, 19, 34, and 17 chips. That’s your sample—it contains 11 values, one for each bag of chips.

So, what’s the mean number of chips that comes in one of these fun-pack bags?

The quick and dirty tip is that the mean value of a sample is calculated by first adding up all the numbers in the sample—in our case, the total number of chips in all the bags put together—and then dividing this total by the number of samples—in this case, that’s the number of bags. The total number of chips is 214, and since these chips are in a total of 11 bags, the mean value is 214 / 11, or about 19.45. Although it looked a little different, this is the same type of averaging used to calculate batting averages in the previous article. Check out this week’s Math Dude “Video Extra!” episode on YouTube for a closer look at this relationship, and to see a few more examples of calculating mean values.

What Does the Mean Value Mean?

But what does this mean value really mean? Well, if you think about it for a bit, you’ll find that replacing all the values in a sample with the mean value doesn’t change the sample’s total value. In other words, in our case, if there were actually 19.45 potato chips (that’s the mean value) in each of the 11 bags, we’d have a combined total of 214 chips—just as we did before. Technically 4, that’s exactly what the mean value means—nothing more, nothing less. It’s certainly a reasonable way to calculate a typical value for a sample, it satisfies our intuitive sense of what an average should be, and it works very well in most cases. But there’s nothing magical about it, and there are certainly other ways to calculate average values. And some of these ways are actually more useful for analyzing 5 certain types of problems. In fact, I’d argue that one of these other ways is better suited to our problem. Why do I say that?

Wrap Up

Well, unfortunately we’re out of time for today, so the answer to that question will have to wait until the next article about median averages. In that article, we’ll see how this type of averaging is better for certain types of data (like ours), and we’ll also talk about a pretty impressive application of median averaging that you can use to remove unwanted tourists from your vacation photos!

But before we finish, did you know that Quick and Dirty Tips has recently launched new e-newsletters from Money Girl, Get-Fit Guy, and Get-It-Done Guy? It’s true. You can get exclusive tips from these Quick and Dirty Tips experts each week that you won't find in their podcast. Just click on the “subscribe” link near the top-right corner of any page of the Quick and Dirty Tips site to sign up for the newsletters. We're running a promotion 6 this month: anyone who has subscribed 7 to a Quick and Dirty Tips newsletter by June 20 will be entered to win free books and audiobooks published by Macmillan. So sign up now and be entered to win.

Until next time, this is Jason Marshall with The Math Dude’s Quick and Dirty Tips to Make Math Easier. Thanks for reading, math fans!

 



v.(in)干涉,干预;(with)妨碍,打扰
  • If we interfere, it may do more harm than good.如果我们干预的话,可能弊多利少。
  • When others interfere in the affair,it always makes troubles. 别人一卷入这一事件,棘手的事情就来了。
n.代数学
  • He was not good at algebra in middle school.他中学时不擅长代数。
  • The boy can't figure out the algebra problems.这个男孩做不出这道代数题。
n.果园,果园里的全部果树,(美俚)棒球场
  • My orchard is bearing well this year.今年我的果园果实累累。
  • Each bamboo house was surrounded by a thriving orchard.每座竹楼周围都是茂密的果园。
adv.专门地,技术上地
  • Technically it is the most advanced equipment ever.从技术上说,这是最先进的设备。
  • The tomato is technically a fruit,although it is eaten as a vegetable.严格地说,西红柿是一种水果,尽管它是当作蔬菜吃的。
v.分析;分析( analyze的现在分词 );分解;解释;对…进行心理分析n.分析
  • Analyzing the date of some socialist countries presents even greater problem s. 分析某些社会主义国家的统计数据,暴露出的问题甚至更大。 来自辞典例句
  • He undoubtedly was not far off the mark in analyzing its predictions. 当然,他对其预测所作的分析倒也八九不离十。 来自辞典例句
n.提升,晋级;促销,宣传
  • The teacher conferred with the principal about Dick's promotion.教师与校长商谈了迪克的升级问题。
  • The clerk was given a promotion and an increase in salary.那个职员升了级,加了薪。
v.捐助( subscribe的过去式和过去分词 );签署,题词;订阅;同意
  • It is not a theory that is commonly subscribed to. 一般人并不赞成这个理论。 来自《简明英汉词典》
  • I subscribed my name to the document. 我在文件上签了字。 来自《简明英汉词典》
学英语单词
abdominal part
absolutely stable
absorbing state
adrenochromes
aluminium foils
asymmetric transformation
banded stilts
basivertebral vein
battologized
be let in on the ground floor
body feed
Buridan's ass
cash invoice
Chorzelów
chronographer
clip off
combined vibrating roller
compensating feedback loop
conus planorbis
cost objective
cotton production
cylinder by-pass valve
D-frame
data over voice
days of rest
deglamorization
derestrict
dextrotorsion
dispersion-equalization
ditching attitude
Dohans
electrical characteristics
externally-braced monoplane
fall-out of synchronism
forecaddies
golden eagle
Goldstein-Scheerer tests
graduated string
half-hunter
Haplopappus spinulosus
have analogy to
heating system
heliotridylamine
hildebrand
hotlines
hyuck
indirect type central air-conditioning unit
Internet suffix
Izena-jima
Kurdistani
lampyridaes
leukoplania
liquid waste receiver tank
local acceptance
lsi-cml circuit technology
magnetoresistance magnetometer
merions
metal surface plasmon and second harmonic generator
minimum graph
mohs scales
natural environment management
nervi ampullaris lateralis
neverless
occasional light
once and a way
ordinary life assurance
oscillator padding
Osipa
photocell matrix
piston curl
pivot hinge
pontes
prequalified tenderer
puffest
queueing system structure
reflux column
repair of side ditch
Revere, Paul
sample-reset loop filter
Scirpus rosthornii
scornliche
separation of spinal cord and arachnoid adhesions
silicon diode array
sope
speed through the water
stellite-faced valve
Subprime Meltdown
tee-times
toll free number
toroidal discharge
transitive law
trichomonal urethro-cystitis
under constraint
undistributed score
virus diarrhea
waltz through
white cypresses
wide anode
win ... over
Yak-141
yellow-necked mice
zygomorphic pea flower