时间:2019-01-24 作者:英语课 分类:英语语言学习


英语课
Robyn Williams: And this is The Science Show on RN where we just heard Amanda Bauer talk about all those robots running the giant instruments. Here's one of them.
Amanda Bauer: This is the robot. The robot reaches down and clamps onto one of these little metal pieces and moves the optical fibre to a place on the metal plate and drops it, and its little magnet allows it to stick very precisely 1. Each one of these fibres has a little light that comes out of it, so the robot can detect that light and know exactly how accurately 2 it's pointing and pick it up and adjust it and then move it a little bit.
Robyn Williams: I suppose if you did it by hand it would take about four years.
Amanda Bauer: Well, have you heard of the Sloan Digital Sky Survey? This is a big survey that is based in New Mexico, and they were developing their technology about the same time this was, and they decided 3 to have big metal plates that they drilled holes in, and they have humans plugging these optical fibres into those plates, and that's what they've been doing for 20 years. So you never quite improve your efficiency that way, whereas we decided to go with the robotic technology. And robots are a bit finicky. They have little attitudes, but we have robot whisperers, as you see around here, who know how to talk to it.
Robyn Williams: A chain is being moved…
Amanda Bauer: Technical things are happening! So with the robotic technology we can still improve the software and improve aspects of it over the years. So it's a bit better now than it was when we first developed it, but it's a funky 4 little robot.
Robyn Williams: Amanda Bauer with the robot running the telescope. But many other robots don't seem quite so funky. Over in Birmingham for instance is one that is trying to pick up objects you'll find in your kitchen. You and I pick them up and put them down without thinking, but this robot…well…
So you are about to give me an object to put on the table in front of the robot. Any particular one? The funnel 5, the pan?
Jeremy Wyatt: Pick which you like.
Robyn Williams: I rather like the funnel, it's a red funnel. So I put it over there…
Jeremy Wyatt: We're going to put it on here first, and now you put the final on top.
Robyn Williams: There we are…
Jeremy Wyatt: Oh, see, you've broken it already…
Robyn Williams: I've broken the…aw! Let me just to describe, while you're trying to work out what needs to be fixed 6, it's huge, each arm has got two arms and they are something like twice the size of a normal human arm, lots of joints 7, and a kind of head up the top with seeing eyes perhaps. Anyway, tell me who you are first and where we are.
Jeremy Wyatt: So I'm Jeremy Wyatt, we are at the University of Birmingham in the robot lab.
Robyn Williams: Right, and you've got a whole number of robots. Which is this one?
Jeremy Wyatt: This is Boris.
Robyn Williams: Boris…but he doesn't have a blond mop.
Jeremy Wyatt: He doesn't have a blond mop, no, I'm not going to draw comparisons with the Mayor of London. They look like quite different characters to me.
Robyn Williams: Right, okay. And what you are trying to do here is pick up an object, and this is an object that is unexpected. In other words, it's not the kind of routine picking up and movement that we can see in places where robots build motorcars, this is de novo, this is something that it's got to learn and home in on afresh. So you are teaching it to learn in many ways, are you?
Jeremy Wyatt: Yes, exactly. So what we're doing is we showed it one object and we showed it exactly how to grasp that one object, and then what we are doing here, as you say, de novo, we are showing it a new object which it hasn't seen before, and you cunningly put the funnel upside down, and so that's going to break it in this case, but if we turn the funnel the other side up it will figure out how to grasp it, because this particular grasp, it knows how to grasp a rim 8.
Robyn Williams: Can I dare do it without breaking it again? Is that okay?
Jeremy Wyatt: That's looking pretty good.
Robyn Williams: And it will decide at some point…
Jeremy Wyatt: Up on the screen over there you can see its little hands appearing, and those hands are where it thinks it might be able to grasp it.
Robyn Williams: So we are looking at its brain, are we, in other words?
Jeremy Wyatt: You are looking at a visualisation of what it's thinking about.
Robyn Williams: Okay. The tension is killing…beginning to…no, no, it's just still thinking…
Jeremy Wyatt: You'll know when it wants to do something because by looking at this screen over here it will tell you it wants to go and grasp it.
Robyn Williams: Is it a real challenge, teaching it to do something new every time?
Jeremy Wyatt: Yes, I think is the one-word answer to that! The interesting thing is building it so that it's robust 9 even to a relatively 10 small range of variation. So it's a real challenge to build a robot that is robust even to variations that to a human are trivial. So, for example, if you pick up a glass, it's all shiny. That foxes current robots. Metal, shiny, that's also really hard. Things that are too brittle 11, things that are too soft. So to bring robots out into the real world, into our world, to get them to work with us, you've got to cope with all of this variation…
Robyn Williams: It's doing it now, it's doing it now! It has picked up the funnel, it's grasping it, a big hand, lifting it up, and the task is to bring it across to a tray full of polystyrene where presumably it will be placed securely. Moving towards the tray, and up and down it comes…drops. And that's good, is it?
Jeremy Wyatt: That's good, I'm happy with that.
Robyn Williams: What is the task that it might do when you've got full computerisation of the actions and so on? What can it do in the household, for example?
Jeremy Wyatt: So the task of this project, the objective is to get the robot to load a dishwasher tray. So you going to have a bunch of objects on the table, scattered 12 as you might have them on a regular kitchen surface, then the robot is going to look through the set of objects, find the one it wants to pick up, figure out where to put it into the dishwasher, and load it. And that is not because we think that dishwashing-loading robots are a critical social need…
Robyn Williams: You could have a Polish au pair to do that for you more easily.
Jeremy Wyatt: I couldn't possibly comment. But the thing is that it's a typical task that humans engage in that requires all of your manipulative faculties 13 that evolution spent hundreds of millions of years developing. And so by being able to put that into a robot we hope to make the robots more flexible in the future. So immediately it's going to do the dishwasher loading task.
Robyn Williams: Now, a naive 14 question; we already have driverless cars which can adapt to presumably the unexpected in a busy highway. How does that compare with what I've got in front of me in terms of robotics?
Jeremy Wyatt: In terms of the machine learning…so machine learning has really been the revolution in all kinds of computing 15, so you can see a lot of data mining, you can see self-driving cars, robots like this, they are all doing machine learning in one form or another, so in that way they are the same. What's a little bit different here is that you are coming into contact with the world to change it, whereas in the car you are moving along the road and you are trying not to change the world, you're trying not to touch things other than the road surface with the wheels.
And so what we are doing here is we are really trying to alter the world, and that's what humans do because we are tool-using animals, that's how we made our world. And so it is thinking about almost a kind of a third generation of robots, because the first generation was industrial robots and they manipulate the world when it is very precisely controlled. And now what we are getting is drones and we are getting self-driving cars and mobile robots that can move around in our world and share it with us safely, even though that world is very uncertain and novel to them. But the moment you want to contact the world and change it, manipulate things in your fingers, use tools, make stuff, assemble things, work with people, then you've got to be able to contact it and that then makes it much, much harder again if you are going to do it under uncertainty 16.
Robyn Williams: Well, that's Boris. What sort of other robots do you have in this laboratory?
Jeremy Wyatt: So if we walk over here we've got Baxter. So Baxter has come from America. So Boris we built here, but Baxter is an American robot. And whereas Boris cost about $350,000, the Americans have made Baxter for about $20,000. So this is a really good example of trying to get some of the tech that actually in future we are developing in Boris could go into a robot like this because this is meant to reshore small-scale manufacturing. So that was the idea of Rod Brooks 17, its inventor.
And it's a big red robot with two arms, and these arms are very floppy 18 and flexible. So what you can do is you can teach the robot by moving the arms around and showing it how to do tasks. And it can pick things up. It also has little cameras underneath 19 its wrists. So that one is, again, not so much for assembly but for picking and placing things in production lines.
Robyn Williams: Again he is just about the same size as a fairly hefty human. And Rodney Brooks is in fact an Australian at MIT, is he not?
Jeremy Wyatt: He is, yes. And over here we have an educational robot which is based on a French platform called a Nao, made by a company called Aldebaran, and that robot, what it's doing is some children when they are learning they get a lot from interacting with a robot. So some children prefer to interact with a robot to a human, and so what happens the robot is used to give feedback to the children on what they are doing.
And then outside we've got our mobile robot, Bob. And Bob is a robot who we've been…well, he's been on work placement as a security guard at G4S, the security company. And he's developing technology for running over very long periods of time. So a very long period of time for a research robot is anything more than a day, because trying to make these systems reliable, particularly when they are encountering humans, because humans always do something that you don't expect. Bob has got to cope with that. And so Bob tries to build up a picture over time by learning how the humans behave, so then he can adapt to the way that the humans work.
Robyn Williams: How far off are you from doing something that's almost like a human in its adaptability 20 and flexibility 21?
Jeremy Wyatt: I think we are possibly still a really long way. But the message here is that even a little bit of adaptability and flexibility goes a really long way. So we are going to have robots coming with just a little bit of intelligence and they are going to solve little tasks for us. So, for example, James Dyson has just announced that he is going to release his new robot vacuum cleaner. That's going to be the first robot vacuum cleaner in the world that can see and can recognise where it is in the room. So it's just a little bit of intelligence but it's really, really useful for the task of doing the robot vacuum cleaning and going back and cleaning up the bits of the house that you know people tend to leave really dirty.
Robyn Williams: Okay, you're in Birmingham, you're in the computer department here. How would you compare Britain with robotics to, say, Germany, you mentioned America, in the league table?
Jeremy Wyatt: In terms of research the UK actually does really well. We have lots of really interesting ideas coming out of the labs. The Germans are really, really good at industrial robotics and they are the powerhouse in the world. I mean, other than the Japanese, Germany makes all the world's industrial robots, so they are brilliant at that.
In America they do a lot of work in military robots and they also have some wonderful labs. Australia is actually the hotbed for field robotics. So down in Australia, particularly for the mining industry, there's a huge amount of work going on in field robotics there, and they are amazing at that.
Robyn Williams: Thank you.
Jeremy Wyatt: Thank you.
Robyn Williams: Jeremy Wyatt and the robot lab at the University of Birmingham, with Boris and Baxter, Rodney Brooks' great big red brute 22 from MIT. And you can see Baxter in the new edition of Cosmos 23 magazine, just out, with a special on robotics.

adv.恰好,正好,精确地,细致地
  • It's precisely that sort of slick sales-talk that I mistrust.我不相信的正是那种油腔滑调的推销宣传。
  • The man adjusted very precisely.那个人调得很准。
adv.准确地,精确地
  • It is hard to hit the ball accurately.准确地击中球很难。
  • Now scientists can forecast the weather accurately.现在科学家们能准确地预报天气。
adj.决定了的,坚决的;明显的,明确的
  • This gave them a decided advantage over their opponents.这使他们比对手具有明显的优势。
  • There is a decided difference between British and Chinese way of greeting.英国人和中国人打招呼的方式有很明显的区别。
adj.畏缩的,怯懦的,霉臭的;adj.新式的,时髦的
  • The kitchen smelled really funky.这个厨房有一股霉味。
  • It is a funky restaurant with very interesting art on the walls.那是一家墙上挂着很有意思的绘画的新潮餐馆。
n.漏斗;烟囱;v.汇集
  • He poured the petrol into the car through a funnel.他用一个漏斗把汽油灌入汽车。
  • I like the ship with a yellow funnel.我喜欢那条有黄烟囱的船。
adj.固定的,不变的,准备好的;(计算机)固定的
  • Have you two fixed on a date for the wedding yet?你们俩选定婚期了吗?
  • Once the aim is fixed,we should not change it arbitrarily.目标一旦确定,我们就不应该随意改变。
接头( joint的名词复数 ); 关节; 公共场所(尤指价格低廉的饮食和娱乐场所) (非正式); 一块烤肉 (英式英语)
  • Expansion joints of various kinds are fitted on gas mains. 各种各样的伸缩接头被安装在煤气的总管道上了。
  • Expansion joints of various kinds are fitted on steam pipes. 各种各样的伸缩接头被安装在蒸气管道上了。
n.(圆物的)边,轮缘;边界
  • The water was even with the rim of the basin.盆里的水与盆边平齐了。
  • She looked at him over the rim of her glass.她的目光越过玻璃杯的边沿看着他。
adj.强壮的,强健的,粗野的,需要体力的,浓的
  • She is too tall and robust.她个子太高,身体太壮。
  • China wants to keep growth robust to reduce poverty and avoid job losses,AP commented.美联社评论道,中国希望保持经济强势增长,以减少贫困和失业状况。
adv.比较...地,相对地
  • The rabbit is a relatively recent introduction in Australia.兔子是相对较新引入澳大利亚的物种。
  • The operation was relatively painless.手术相对来说不痛。
adj.易碎的;脆弱的;冷淡的;(声音)尖利的
  • The pond was covered in a brittle layer of ice.池塘覆盖了一层易碎的冰。
  • She gave a brittle laugh.她冷淡地笑了笑。
adj.分散的,稀疏的;散步的;疏疏落落的
  • Gathering up his scattered papers,he pushed them into his case.他把散乱的文件收拾起来,塞进文件夹里。
n.能力( faculty的名词复数 );全体教职员;技巧;院
  • Although he's ninety, his mental faculties remain unimpaired. 他虽年届九旬,但头脑仍然清晰。
  • All your faculties have come into play in your work. 在你的工作中,你的全部才能已起到了作用。 来自《简明英汉词典》
adj.幼稚的,轻信的;天真的
  • It's naive of you to believe he'll do what he says.相信他会言行一致,你未免太单纯了。
  • Don't be naive.The matter is not so simple.你别傻乎乎的。事情没有那么简单。
n.计算
  • to work in computing 从事信息处理
  • Back in the dark ages of computing, in about 1980, they started a software company. 早在计算机尚未普及的时代(约1980年),他们就创办了软件公司。
n.易变,靠不住,不确知,不确定的事物
  • Her comments will add to the uncertainty of the situation.她的批评将会使局势更加不稳定。
  • After six weeks of uncertainty,the strain was beginning to take its toll.6个星期的忐忑不安后,压力开始产生影响了。
n.小溪( brook的名词复数 )
  • Brooks gave the business when Haas caught him with his watch. 哈斯抓到偷他的手表的布鲁克斯时,狠狠地揍了他一顿。 来自《简明英汉词典》
  • Ade and Brooks exchanged blows yesterday and they were severely punished today. 艾德和布鲁克斯昨天打起来了,今天他们受到严厉的惩罚。 来自《简明英汉词典》
adj.松软的,衰弱的
  • She was wearing a big floppy hat.她戴了顶松软的大帽子。
  • Can you copy those files onto this floppy disk?你能把那些文件复制到这张软盘上吗?
adj.在...下面,在...底下;adv.在下面
  • Working underneath the car is always a messy job.在汽车底下工作是件脏活。
  • She wore a coat with a dress underneath.她穿着一件大衣,里面套着一条连衣裙。
n.适应性
  • It has a wide range of adaptability.它的应用性广。
n.柔韧性,弹性,(光的)折射性,灵活性
  • Her great strength lies in her flexibility.她的优势在于她灵活变通。
  • The flexibility of a man's muscles will lessen as he becomes old.人老了肌肉的柔韧性将降低。
n.野兽,兽性
  • The aggressor troops are not many degrees removed from the brute.侵略军简直象一群野兽。
  • That dog is a dangerous brute.It bites people.那条狗是危险的畜牲,它咬人。
n.宇宙;秩序,和谐
  • Our world is but a small part of the cosmos.我们的世界仅仅是宇宙的一小部分而已。
  • Is there any other intelligent life elsewhere in the cosmos?在宇宙的其他星球上还存在别的有智慧的生物吗?
学英语单词
a small bundle of stipules
acetate dye
adouetine
arabis
argument-quality
armfuls
Baillarger's layer
bear out
benzohydroxamic
brain-teaser
Bruton
cellular glass ceramics
central sheath
cheshire printers
ciliary action
clerc
cogroups
colocynthein
colosso
cora pavonia e. fries
curved jet
Decrypt.
deposed
dihydromurexine
disenabling
dynamic bending modulus
egoist
ethylene-vinyl alcohol copolymer
executable symbol
Filaria extra-ocularis
fireworks and crackers
galcatin
Gibbs-Donnan equilibrium
going, going, gone!
gunner's slit
hands-downs
hang in for someone
hasche process
heartquakes
heddur
hillstream
holyroodhouses
host resident software
Icosandia
incompressible boundary layer
incrusting solids
intikhabs
irrotional
isobutyl mercaptan
locutoria
low-pressure vacuum pump
meteorium cucullatum
mineral-lard oil
minus lap
monickers
multiparty call
myelination
negligent damage
normal control wire
orbit period
p.f.i.
Parkesine
pen-ups
photo-laparoscope
polar response curve
praunces
propagation ground
put the cat among the pigeons
quadridentate ligand
queriers
radiation ageing
rasp palms
regressive dissimilation
road transport of goods
RTCA
scale off
Shatalovo
sleepshirt
spoon-drift
Starch-grains
Subrogation of Maritime Lien
sulphocarbonate
surnia ululas
Swietenia mahagoni
target cross section
tarses
thorstein bunde veblens
three state of matter
time-varying load
tombusvirus
tomorrow night
transductor controller
trucking cost
true up
typhlectasia
umbrinas
undisbanded
urovison
wander
wave front steepness
white noise limiting circuit
work file